
International Journal of Scientific & Engineering Research, Volume 11, Issue 10, October-2020
ISSN 2229-5518

Device driver programming: Implementation
of Linux USB Device Driver

Sharanya Mukherjee

Abstract— This paper focuses on the implementation of USB Pen-drive utility program aims at handling the sensible information of
operating of modules and kernels where we tend to find out how the module is loaded in the kernel for the execution of the code. The paper
also jointly aims at registering the device within the UNIX system. The module where we tend to write the fundamental registration and de-
registration program for the USB pen-drive ,has been written in C language . The module file is saved with .o extension within the kernel
file.

Index Terms—Device Driver programming, USB device driver, kernel, UNIX, module, Operating system, Linux,

—————————— ——————————

1 INTRODUCTION
The purpose of a device driver is to handle requests created

by the kernel with reference to a selected style of device.
There's a well-defined and consistent interface for the kernel to
form these requests. By noninflected device-specific code in
device drivers and by having the same interface to the kernel,
adding a brand new device is less complicated. a device driver
could be a software package module that resides at intervals
the Digital OS kernel and is that the software package interface
to a hardware device or devices. A hardware device could be a
peripheral, like a controller, tape controller, or network con-
troller device. In general, there's one utility program for every
style of hardware device.

2 LITERATURE REVIEW
 A device driver, run as a part of the kernel software

system, manages every of the device controllers on the
system. Often, one utility manages a complete set of
identical device controller interfaces. With Digital OS, you'll
be able to statically assemble additional device drivers into
the kernel than there are physical devices within the
hardware system. At boot time, the car configuration
software system determines that the physical devices are
accessible and useful and might turn out an accurate run-
time configuration for that instance of the running kernel.
Similarly, once a driver is dynamically designed, the kernel
performs the configuration sequence for every instance of
the physical device.
As explicit antecedence, the kernel makes requests of a driver
by line of work the driver's commonplace entry points (such as
the probe, attach, open, read, write, shut entry points). Within
the case of I/O requests like read and write, it's typical that the
device causes associate degree interrupt upon completion of
every I/O operation. Thus, a write supervisor call instruction
from a user program might end in many calls on the interrupt
entry purpose additionally to the initial invoke the write entry
purpose. This can be the case once the write request is divided
into many partial transfers at the driving force level. Device
drivers, in turn, create calls upon kernel support interfaces to
perform the tasks mentioned earlier. The device register offset
definitions giving the layout of the management registers for a
tool are a part of the supply for a tool driver. Device drivers,

not like the remainder of the kernel, will access and modify
these registers. Digital OS provides generic CSR I/O access
kernel interfaces that enable device drivers to browse from and
write to those registers.
Firstly, we should be aware of the fact that whether a driver for
a USB device is there or not on a Linux system, a valid USB de-
vice will always be detected at the hardware and kernel spaces
of a USB-enabled Linux system, since it is designed (and de-
tected) as per the USB protocol specifications. At the
hardware level, the Hardware-space detection is done by the
USB host controller which is typically a native bus device The
corresponding host controller driver would pick and translate
the low-level physical layer information into higher-level USB
protocol-specific information. The USB protocol formatted in-
formation about the USB device is then populated into the
generic USB core layer (the USB core driver) in kernel-space,
thus enabling the detection of a USB device in kernel-space,
even without having its specific driver available.

3 LINUX COMMANDS USED
A basic listing of all detected USB devices can be obtained us-
ing the lsusb command, as root

• lsusb (It is used to view all the usb devices
connected)

• lsusb –v (Is is used to give a detailed view of the usb
devices

• connected)
• cat /sys/kernel/debug/usb/devices (It also gives de-

tail info of the
• connected devices including the details of interfaces

and endpoints)
• sudo –i (in order to log in from root)
• make (to compile a module)
• insmod (inserting a module)
• rmmod (removing a module)
• modprobe (inserting back a module)
• mount (lists all mounted devices)
• fdisk –l (Gives detailed info of the mounted disks)
• mkdir (create new directory)

IJSER © 2020
http://www.ijser.org

955

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 10, October-2020
ISSN 2229-5518

4 IMPLEMENTATION
The source code is very simple. The header files used are
linux/module.h, linux/kernel.h and linux/usb.h. The most
important structure is our usb_driver structure. It is the core of
our code. It includes 4 main branches. Name, id , prob and dis-
connect. There are three functions defined inside the structure
of usb_driver. Name is simply the name of the device driver.

 First of all let's talk about our ID table which is taken in
the form of an array. It is because we want to detect as many
devices we want. The ID table is fully dependent upon two
things. The Vendor ID and the Product ID. Whenever a device
is connected this ID_Table function just matches whether the
vendor ID and product ID matches to any of the stored ID’s. If
yes, then it takes control of the device. However , if it doesn’t
match then it lets go. The vendor ID and Product ID are saved
in the USB_DEVICE(vendor,product) function. At the end we
have a terminating condition for a situation in which our
driver receives null.
 Moving on towards the prob function. It is called when-
ever a device is connected to any of the serial ports in our sys-
tem. In this function we have two arguments one is the inter-
face pointer while the other is for the USB ID(it is the same as
the ID, mentioned above). Other than the arguments I have
initialized two different structures. One of type usb_host_in-
terface while other is of type usb_endpoint_descriptor. The
host interface has all the information about the interface of the
device you have connected. Meanwhile the endpoint descrip-
tor will have the detailed information about the endpoints
available in our device. These both are just used in order to
print the number of endpoints and to print out the attributes
and details of the endpoints. After that we have stored the in-
formation of the usb_host into a pointer and then printed the
number of endpoints. Then we had a loop from 1 to the num-
ber of endpoints available.
 Then one by one we have printed the addresses, MXPS
and the type of endpoint for all the endpoints inside the de-
vice. After that we have a function named disconnect. The
name suggests it very well. Yes, the disconnect function is only
called when the device is disconnected. We don’t have to do
anything special in this function. Therefore, I have just printed
a statement on the console instead. Now talking about the init
function. We all know that init function is the function that is
called when you are installing a mod. Therefore, we have regis-
tered the module as a usb device driver in the init function.
However, if the usb registration is not done properly then the
return value will be -1 else than that it will be greater than 0.
 To conclude, we can see 5 different lines. The first two
lines of module_init(usb_init) is just telling the kernel that the
init function for this module is usb_init. Same goes for our
favourite exit function. After that we have taken license from
GPL. Without this license I cannot call the functions such as
usb_register or usb_deregister. It is because the ubuntu has a
permission set not letting everyone use those special functions.
But when you give a license of GPL then no one can stop you
from taking any function from the usb.h library. Next line just
shows the author and after that the module_description is
showing just a small description of our code.

4.1 MODULE CODE

#INCLUDE<LINUX/INIT.H>
#INCLUDE<LINUX/MODULE.H>
#INCLUDE<LINUX/KERNEL.H>
#INCLUDE<LINUX/USB.H>
//PROBE FUNCTION

STATIC INT PEN_PROBE (STRUCT USB_INTERFACE *INTERFACE, CONST

STRUCT USB_DEVICE_ID *ID)
{
PRINTK(KERN_INFO "[*] OS PEN DRIVE (%04X:%04X) PLUGGED\N" ,
ID->IDVENDOR, ID->IDPRODUCT);
RETURN 0 ;
}
//DISCONNECT

STATIC VOID PEN_DISCONNECT (STRUCT USB_INTERFACE *INTERFACE) {
PRINTK(KERN_INFO "[*] PEN DRIVE REMOVED\N");
}
//USB_DEVICE_ID

STATIC STRUCT USB_DEVICE_ID PEN_TABLE [] = {
//(0781:5567)
{ USB_DEVICE(0X0781 , 0X5567) }, //VENDOR_ID,PRODUCT_ID

{} /* TERMINATING ENTRY */
};
MODULE_DEVICE_TABLE (USB, PEN_TABLE);
// USB_DRIVER

STATIC STRUCT USB_DRIVER PEN_DRIVER =
{
.NAME = "MYPENDRIVE" ,
.ID_TABLE = PEN_TABLE, //USB_DEVICE_ID

.PROBE = PEN_PROBE,

.DISCONNECT = PEN_DISCONNECT,
};
STATIC INT PEN_INIT (VOID) {
INT RET = -1 ; PRINTK(KERN_INFO "[*] CONSTRUCTOR OFDRIVER");
PRINTK(KERN_INFO "\TREGISTERING DRIVER WITH KERNEL");
RET = USB_REGISTER(&PEN_DRIVER);
PRINTK(KERN_INFO "\TREGISTRATION IS COMPLETE");
RETURN RET;
}
STATIC VOID PEN_EXIT (VOID) {
//DEREGISTER

PRINTK(KERN_INFO "[*] DESTRUCTOR OF DRIVER");
USB_DEREGISTER(&PEN_DRIVER);
PRINTK(KERN_INFO "\T UNREGISTRATION COMPLETE!");
}
MODULE_INIT(PEN_INIT);
MODULE_EXIT(PEN_EXIT);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("SHARANYA");
MODULE_DESCRIPTION("USB PEN REGISTRATION DRIVER");

IJSER © 2020
http://www.ijser.org

956

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 10, October-2020
ISSN 2229-5518

4.2 KERNEL CODE

obj-m := usb.o
KERNEL_DIR= /lib/modules/ $(shell uname -r) /build
PWD= $(shell pwd)
all:
$(MAKE) -C $
(KERNEL_DIR) M= $(shell pwd) modules
clean:
rm -rf *.o *.ko *.mod.* *.symvers *.order *~

5 RESULT
For this paper, we will be using a SanDisk Pen-drive and write
a driver for it. The vendor ID and Product ID can be obtained
from the following command-
“Lsusb-v”. We can see from the image below that the vendor
id for the USB Stick is 0x0781 and Product id is 0x5567.

Fig 1: Finding the vendor ID and product ID of our
USB pen-drive with “lsusb-v” command.

We further compile our module using the command “make”.

Fig 2: Compiling the module with ‘make’ command

After successfully building our module we need to insert it
using the “insmod” command.

 Fig 3: Inserting the module with “insmod” command.

When the pen-drive is connected it gets registered by the
device driver.

Fig 4: Pen-drive gets registered by the device driver

For Deregistering the pendrive and removing the modules
we use the “rmmod” command

Fig 5: Removing the module with “rmmod” command

IJSER © 2020
http://www.ijser.org

957

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 10, October-2020
ISSN 2229-5518

4 CONCLUSION
We have implemented a code for usb device
drivers where we have shown registering of a usb pen drive in
linux system. A directory was made which had 2 files that are
Kernel and Module file. The module coding has been done in
C language and Kernel helps in loading of module for device
driver. When the pen drive is connected, it gets registered
by the device driver and as soon as we remove it, it gets dis-
connected and the registration remains incomplete. We con-
clude that our kernel and module have been properly imple-
mented for the formation of device driver and usb
pen drive is getting registered properly.

REFERENCES

[1] T. Ball and S. K. Rajamani. The SLAM project: Debugging system software
via static analysis. In Symposium on Principles of Programming Languages
(POPL), pages 1–3, Portland, Oregon, January 2002.

[2] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler. An empirical
study of operating system errors. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP), volume 35 of
Operating System Review, pages 73–88, Banff, Alberta, Canada, Octo-
ber 2001.

[3] K. Crary and G. Morrisett. Type structure for low-level programming
 languages. In International Colloquium on Automata, Languages, and

 Programming (ICALP) 1999, volume 1644 of Lecture Notes in Computer
 Science, pages 40–54, Prague, Czech Republic, July 1999. Springer Verlag.
[4] R. DeLine and M. F ahndrich. Enforcing high-level protocols in low-level ̈
 software. In Proceedings of the ACM Conference on Programming Laguage
 Design and Implementation (PLDI), pages 59–69, Snowbird, Utah, June 2001.
[5] G. J. Holzmann. Software analysis and model checking. In Computer
 Aided Verification, 14th International Conference (CAV), volume 2404 of
Lecture Notes on Computer Science, pages 1–16, Copenhagen, Denmark, July
2002. Springer Verlag.

[6] F. M erillon, L. R eveill`ere, C. Consel, R. Marlet, and G. Muller. Devil: An ́ ́
IDL for hardware programming. In Proceedings of the 4th USENIX Symposium
on Operating System Design and Implementation (OSDI), pages 17–30, San
Diego, California, October 2000.
[7] M. O’Nils and A. Jantsch. Operating system sensitive device driver synthesis
from implementation independent protocol specification. In Proceedings of De-
sign
Automation and Test in Europe (DATE), pages 562–567, Munich, Germany,
March 1999.
[8] S. Thibault, R. Marlet, and C. Consel. Domain-specific languages: from design
to implementation—application to video device drivers generation. IEEE
Transactions on Software Engineering, 25(3):363–377, May-June 1999.
[9] S. Wang and S. Malik. Synthesizing operating system based device drivers in
embedded systems. In Proceedings of the First International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), Newport
Beach, CA, October 2003.

IJSER © 2020
http://www.ijser.org

958

IJSER

http://www.ijser.org/

	1 Introduction
	2 LITERATURE REVIEW
	A device driver, run as a part of the kernel software system, manages every of the device controllers on the system. Often, one utility manages a complete set of identical device controller interfaces. With Digital OS, you'll be able to statically assemble additional device drivers into the kernel than there are physical devices within the hardware system. At boot time, the car configuration software system determines that the physical devices are accessible and useful and might turn out an accurate run-time configuration for that instance of the running kernel. Similarly, once a driver is dynamically designed, the kernel performs the configuration sequence for every instance of the physical device.
	3 LINUX COMMANDS USED

	4 IMPLEMENTATION
	4.1 MODULE CODE
	4.2 KERNEL CODE
	5 RESULT
	4 Conclusion

